The Frobenius Problem for Generalized Repunit Numerical Semigroups

نویسندگان

چکیده

Abstract In this paper, we introduce and study the numerical semigroups generated by $$\{a_1, a_2, \ldots \} \subset {\mathbb {N}}$$ { a 1 , 2 … } ⊂ N such that $$a_1$$ is repunit number in base $$b > 1$$ b > of length $$n n $$a_i - a_{i-1} = a\, b^{i-2},$$ i - = for every $$i \ge 2$$ ≥ , where a positive integer relatively prime with . These generalize among many others. We show they have interesting properties as being homogeneous Wilf. Moreover, solve Frobenius problem family, giving closed formula terms b n compute other usual invariants Apéry sets, genus or type.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Frobenius problem for numerical semigroups

In this paper, we characterize those numerical semigroups containing 〈n1, n2〉. From this characterization, we give formulas for the genus and the Frobenius number of a numerical semigroup. These results can be used to give a method for computing the genus and the Frobenius number of a numerical semigroup with embedding dimension three in terms of its minimal system of generators.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Frobenius numbers of generalized Fibonacci semigroups

The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...

متن کامل

The Frobenius problem for numerical semigroups with embedding dimension equal to three

If S is a numerical semigroup with embedding dimension equal to three whose minimal generators are pairwise relatively prime numbers, then S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a− 1}, and a < b < cb− da. In this paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius number, and the set of pseu...

متن کامل

Frobenius Problem for Semigroups S (d1, d2, d3)

The matrix representation of the set ∆(d), d = (d1, d2, d3), of the integers which are unrepresentable by d1, d2, d3 is found. The diagrammatic procedure of calculation of the generating function Φ ( d; z ) for the set ∆(d) is developed. The Frobenius number F ( d ) , genus G ( d ) and Hilbert series H(d; z) of a graded subring for non–symmetric and symmetric semigroups S ( d ) are found. The u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-02233-w